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Viscous cosmological models and accelerated universes
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It is shown that a present acceleration with a past deceleration is a possible solution to the Friedmann
equation by considering the Universe as a mixture of a scalar with a matter field and by including a nonequi-
librium pressure term in the energy-momentum tensor. The dark energy density decays more slowly with
respect to the time than the matter energy density does. The inclusion of the nonequilibrium pressure leads to
a less pronounced decay of the matter field with a shorter period of past deceleration.
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According to recent cosmological observations there
ists evidence that the Universe is flat~see Sieverset al. @1#!
and expanding with a positive acceleration~see Perlmutter
et al. @2# and Riesset al. @3#!. The flatness of the Universe i
connected with the total density parameterV tot which is the
sum of the density parameters related to the vacuum en
VL , cold dark matterVCDM , and baryonsVb , i.e., V tot
5VL1VCDM1Vb . The sum of the density parameters
cold dark matter and baryons refers to the matter den
parameterVm5VCDM1Vb . The most recent values for th
density parameters from measurements of the anisotrop
the cosmic microwave background~CMB! are @1#

V tot51.0120.06
10.09, Vm50.3760.11,

and

Vb50.06060.020.

Measurements of the redshift of the type Ia supernova
1997ff indicate a present acceleration of the Universe a
according to Turner and Riess@4#, provide a past decelera
ing phase of the Universe.

Phenomenological cosmologies play an important role
the understanding of the evolution of the Universe. A
markable combination of general relativity and thermod
namics allows the description of different regimes in cosm
logical theories. Models that include the recent experime
evidence of a present accelerated Universe therefore des
increasing attention.

On the other hand, there exist other regimes where a p
tive acceleration is present. Indeed, in inflationary models
exponential expansion with positive acceleration for
early Universe is proposed where a hypothetical particle,
inflation, is at the core of that mechanism. These ideas p
the role of a precursor for the relation between vacuum~or
dark! energy and a cosmological constant that depends
time. For recent reviews on dark energy one is referred to
works by Peebles and Ratra@5# and Turner@6#.

What we know today is that dark energy dominates
composition of our Universe and is responsible for the po
tive accelerated expansion. It interacts weakly with ordin
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matter ~baryonic matter represents at maximum 5% of t
whole mass/energy composition of our Universe!.

The point we would like to discuss in this work is that
past decelerated with a present accelerated expansion o
Universe can be found as a solution of the Friedmann eq
tion. The Universe is modeled as a mixture of two consti
ents, namely, a scalar field that represents the dark en
and a matter field that describes the baryonic matter and
cold dark matter; in our approach the interaction between
different constituents refers only to the one between the d
energy and the matter via the gravitational field which
represented by the cosmic scale factora(t). We model this
interaction by using the ideas of a thermodynamic theory,
means of the inclusion of a nonequilibrium pressure term
the energy-momentum tensor which represents an irrev
ible process of energy transfer between the matter and
gravitational fields. Within the framework of first order Eck
art thermodynamic theory the nonequilibrium pressure
proportional to the Hubble parameter and its proportiona
factor is identified with the bulk viscosity, so that this mod
is referred to in the literature as a viscous cosmologi
model ~see, for example, Ref.@7#!.

Although the transition from a past deceleration to
present acceleration of the Universe is found as a poss
solution of the Friedmann equation independently of
presence of the nonequilibrium pressure term, it is very qu
tionable to model the Universe as a perfect gas mixture
scalar and matter fields evolving without dissipative effe
~for further discussions on this subject one is referred to R
@8#!. In this work, it is shown that the dark energy dens
decays more slowly with respect to the time than the ma
energy density does. These conclusions are valid for b
cases where the nonequilibrium pressure is present or ab
However, the inclusion of a nonequilibrium pressure leads
a less pronounced decay of the matter field with a sho
period of past deceleration, since the nonequilibrium pr
sure is the responsible for the energy transfer between
matter and the gravitational fields.

We shall consider a spatially flat, homogeneous and
tropic Universe described by the Robertson-Walker met
With respect to the four-velocityUm the energy-momentum
tensorTmn is decomposed as1

1Units have been chosen so thatc51.
©2003 The American Physical Society01-1
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Tmn5~rX1rm1pX1pm1Ã!UmUn2~pX1pm1Ã!gmn,
~1!

wherepX is the pressure of the dark energy,pm is the pres-
sure of the matter field, andÃ denotes the nonequilibrium
pressure which is coupled to the irreversible process of
ergy transfer between matter and gravitational fields.

In a comoving frame the conservation law of the ener
momentum tensorTmn

;n50 leads to the balance equation f
the energy density

ṙX1 ṙm13H~rX1rm1pX1pm1Ã!50, ~2!

whereH5ȧ/a is the Hubble parameter and the dot refers
a differentiation with respect to time.

The identification of the dark energy with a scalar fie
allow us to assume that the balance equation for the d
energy density is given by

ṙX13H~rX1pX!50. ~3!

Hence, the balance equation for the dark energy density
couples from that for the energy density of the matter and
have from Eqs.~2! and ~3!

ṙm13H~rm1pm!523HÃ. ~4!

The equation that connects the evolution of the cosmic s
factora(t) with the energy densities of the scalar and ma
fields is given by the Friedmann equation

H25
8pG

3
~rX1rm!, ~5!

whereG is the gravitational constant.
In a previous work@9# we have calculated the energ

momentum pseudotensor of the gravitational field in a
Robertson-Walker metric and found

TG
0052

3

8pG
S ȧ

a
D 2

. ~6!

If we identify the TG
00 with the energy densityrG of the

gravitational field we can obtain the relationshiprG
52(rX1rm) thanks to the Friedmann equation~5!.

Now we differentiaterG52(rX1rm) with respect to the
time and by using the balance equation for the energy den
~4! we get

ṙG13H~rG2pm2pX!53HÃ, ~7!

which can be interpreted as a balance equation for the en
density of the gravitational field. Moreover, if we compa
Eqs. ~4! and ~7! we infer that the right-hand side of bot
equations has a term~with opposite sign! proportional to the
nonequilibrium pressure which is responsible to the tran
of energy between the gravitational and matter fields.
04730
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It is usual to assume for the pressure of the dark ene
the equation of statepX5wXrX , with wX,21/3 ~see
Peebles and Ratra@5#!. Hence, one can obtain by integratio
of Eq. ~3!

rX

rX
0 5S a0

a D 3(wX11)

, ~8!

whererX
0 and a0 are the values of the dark energy dens

and of the cosmic scale factor att50 ~by adjusting clocks!,
respectively.

In order to determine the time evolution of the dark e
ergy density one has to know the evolution of the cosm
scale factor which is determined from the system of Eqs.~4!,
~5!, and~8!. This system of equations is closed by assum
a relationship between the pressure and the energy dens
the matter and a constitutive equation for the nonequilibri
pressureÃ. We assume a barotropic equation of state for
pressurepm5wmrm , with 0<wm<1 and a linear relation-
ship between the nonequilibrium pressureÃ and the Hubble
parameterH within the framework of Eckart first order ther
modynamic theory

Ã523hH, h5a~rX1rm!. ~9!

In the above equationh is the coefficient of bulk viscosity
which is consider to be proportional to the energy density
the mixture anda is a constant.

We differentiate the Friedmann equation~5! with respect
to the time and get by the use of Eqs.~8! and ~9!

Ḣ5
3

2 F ~wm2wX!

11rm
0 /rX

0 S 1

aD 3(wX11)

1~3aH2wm21!H2G .
~10!

Aboverm
0 is the energy density of the matter field att50 ~by

adjusting clocks!. Moreover, all terms in Eq.~10! are dimen-
sionless quantities defined by

H[
H

H0
, t[tH0 , a[

a

a0
, a[aH0 ,

with

H05A8pG

3
~rX

01rm
0 !. ~11!

Equation~10! is a second-order differential equation fo
the cosmic scale factora(t) which is a function of four pa-
rameters, namely,wm , wX , a, andrm

0 /rX
0 . The solution of

the differential equation~10! is found by specifying values
for two initial conditions and for the four parameters.

Instead of using the constitutive equation~9! for the non-
equilibrium pressure one may consider it as a variable wit
the framework of extended~causal or second-order! thermo-
dynamic theory. In this case the evolution equation for
nonequilibrium pressure—in a linearized theory—reads~see,
for example, Ref.@10#!

Ã1tÃ̇523hH, ~12!
1-2
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wheret is a characteristic time. Here we follow the work
@11# and assume that the characteristic time is given bt
5h/r.

Hence, we obtain from the Friedmann equation~5! and
from the evolution equation for the nonequilibrium pressu
~12! the following system of differential equations:

Ḣ5
3

2 F ~wm2wX!

11rm
0 /rX

0 S 1

aD 3(wX11)

2~wm11!H21ÃG ,
~13!

Ã1aÃ̇523aH3, ~14!

thanks to the second term in Eq.~9!. Apart from the dimen-
sionless quantities introduced above,Ã[8pGÃ/(3H0

2) is a
dimensionless nonequilibrium pressure.

If we specify values for three initial conditions and for th
four parameterswm , wX , a, andrm

0 /rX
0 we can obtain from

the system of Eqs.~13! and ~14! the time evolution of the
cosmic scale factora(t) and of the nonequilibrium pressur
Ã(t).

Oncea(t) is determined from Eq.~10! or from the system
~13! and ~14! one can find the energy densities by using
expressions

rX5S 1

aD 3(wX11)

, rm5S 11
rX

0

rm
0 DH22

rX
0

rm
0 S 1

aD 3(wX11)

,

~15!

whererX[rX /rX
0 andrm[rm /rm

0 are dimensionless quan
tities.

The initial conditions we choose at the instant of timet
50 ~by adjusting clocks! are a(0)51 for the cosmic scale
factor andH(0)51 for the Hubble parameter andÃ̇(0)
50 for the nonequilibrium pressure. Since the different
equations~10!, ~13!, and~14! do depend on the four param
eterswm , wX , a, andrm

0 /rX
0 there exists much freedom t

find their solutions. In order to obtain the graphics in Fig
we have chosen~a! wX520.7 so that the conditionwX,
21/3 holds, ~b! wm50.2, so that 0,wm,1/3 where the
value wm50 refers to dust andwm51/3 to radiation,~c!
rm

0 /rX
052, i.e., the amount of the matter energy density

twice that of the dark energy density,~d! a50 when the
nonequilibrium pressure is absent anda50.05~say! when it
is present.

We have plotted in Fig. 1 the dark energy densityrX , the
matter energy densityrm and the accelerationä as functions
of the timet for the three cases:~a! by using a second-orde
thermodynamic theory~straight lines!, ~b! by using a first-
order thermodynamic theory~dashed lines!, and ~c! by ne-
04730
e

e

l
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glecting the nonequilibrium pressure~perfect fluid solution!.
We infer from this figure that for the parameters chos
above the behavior of the solutions of the first-order a
second-order thermodynamic theories is practically the sa
In the three cases there exist periods where the Univers
decelerating and accelerating. Moreover, the dark ene
density decays more slowly than the matter energy den
does. Even when a small amount of dark energy densit
with respect to the matter energy density—is taken into
count, these fields evolve in such a manner that for la
times the amount of dark energy density is very large w
respect to the energy density of the matter field. The inc
sion of the nonequilibrium pressure leads to~i! a slower de-
cay of the matter field with respect to the time, which is
consequence of the irreversible process of energy tran
between the matter and gravitational fields,~ii ! a smaller
interval of past deceleration, and~iii ! a more rapid decay o
the dark energy density.

Other conclusions can be obtained by changing the va
of the parameters. In the case where there is no dark en
densityrX50 there is no period of acceleration, i.e., only
period of deceleration is possible. By changing the inter
wm to 1/3,wm,2/3—which corresponds to the interval b
tween radiationwm51/3 and nonrelativistic matterwm
52/3—the period of past deceleration increases. This
result is also found whenwX increases, i.e., forwX.20.7.
By increasing the value of the dimensionless constanta the
effect of the nonequilibrium pressure is more pronounc
and the period of past deceleration decreases.

FIG. 1. Dark energy densityrX , matter energy densityrm , and

accelerationä vs timet for perfect fluid~dotted line! and first-order
~dashed line! and second-order~straight line! thermodynamic theo-
ries.
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