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Viscous cosmological models and accelerated universes
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It is shown that a present acceleration with a past deceleration is a possible solution to the Friedmann
equation by considering the Universe as a mixture of a scalar with a matter field and by including a nonequi-
librium pressure term in the energy-momentum tensor. The dark energy density decays more slowly with
respect to the time than the matter energy density does. The inclusion of the nonequilibrium pressure leads to
a less pronounced decay of the matter field with a shorter period of past deceleration.
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According to recent cosmological observations there exmatter (baryonic matter represents at maximum 5% of the
ists evidence that the Universe is flaee Sieveret al.[1]) whole mass/energy composition of our Universe
and expanding with a positive acceleratiee Perlmutter The point we would like to discuss in this work is that a
et al.[2] and Ries=t al.[3]). The flatness of the Universe is past decelerated with a present accelerated expansion of the
connected with the total density paramekg, which is the  Universe can be found as a solution of the Friedmann equa-
sum of the density parameters related to the vacuum energipn. The Universe is modeled as a mixture of two constitu-
Q,, cold dark matte)cpy, and baryons()y, i.e., i ents, namely, a scalar field that represents the dark energy
=0, +QcpytQp. The sum of the density parameters of 5ng g matter field that describes the baryonic matter and the
cold dark matter and baryons refers to the matter densitys|q gark matter; in our approach the interaction between the
parametet),=Qcpy+ Q. The most recent values for the iterent constituents refers only to the one between the dark
density parameters from measurements of the anisotropy Qnergy and the matter via the gravitational field which is
the cosmic microwave backgrout@MB) are[1] represented by the cosmic scale faci¢r). We model this
interaction by using the ideas of a thermodynamic theory, by
means of the inclusion of a nonequilibrium pressure term in
the energy-momentum tensor which represents an irrevers-
ible process of energy transfer between the matter and the
gravitational fields. Within the framework of first order Eck-
art thermodynamic theory the nonequilibrium pressure is

Measurements of the redshift of the type la supernova Slﬁ)ropor.tio'nal tg'the Hubble parameter .and its propqrtionality
1997ff indicate a present acceleration of the Universe and‘gctor is |dent|f|_ed with _the bulk wscosﬂy, so that this moo_lel
according to Turner and Rie$4], provide a past decelerat- 'S referred to in the literature as a viscous cosmological
ing phase of the Universe. model (see, for example, Ref7]).

Phenomenological cosmologies play an important role in Although the transition from a past deceleration to a
the understanding of the evolution of the Universe. A re-present acceleration of the Universe is found as a possible
markable combination of general relativity and thermody-solution of the Friedmann equation independently of the
namics allows the description of different regimes in cosmo-fresence of the nonequilibrium pressure term, it is very ques-
logical theories. Models that include the recent experimentafionable to model the Universe as a perfect gas mixture of
evidence of a present accelerated Universe therefore desersealar and matter fields evolving without dissipative effects
increasing attention. (for further discussions on this subject one is referred to Ref.

On the other hand, there exist other regimes where a posi8]). In this work, it is shown that the dark energy density
tive acceleration is present. Indeed, in inflationary models adecays more slowly with respect to the time than the matter
exponential expansion with positive acceleration for theenergy density does. These conclusions are valid for both
early Universe is proposed where a hypothetical particle, theases where the nonequilibrium pressure is present or absent.
inflation, is at the core of that mechanism. These ideas plaifowever, the inclusion of a nonequilibrium pressure leads to
the role of a precursor for the relation between vacyom a less pronounced decay of the matter field with a shorter
dark) energy and a cosmological constant that depends operiod of past deceleration, since the nonequilibrium pres-
time. For recent reviews on dark energy one is referred to theure is the responsible for the energy transfer between the
works by Peebles and Ratfa] and Turner6]. matter and the gravitational fields.

What we know today is that dark energy dominates the We shall consider a spatially flat, homogeneous and iso-
composition of our Universe and is responsible for the positropic Universe described by the Robertson-Walker metric.
tive accelerated expansion. It interacts weakly with ordinarywith respect to the four-velocity* the energy-momentum

tensorT*” is decomposed &s

Q=101 0,=0.37+0.11,
and

0,=0.060+0.020.

*Email address:kremer@fisica.ufpr.br
"Email address: devecchi@fisica.ufpr.br 1Units have been chosen so that 1.
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TE=(px+ pm+ Px+ Pm+ @)UHU"— (px+ Pt &) g~ It is usual to assume for the pressure of the dark energy
(1) the equation of statgpy=wypyx, with wy<—1/3 (see
Peebles and Ratf®]). Hence, one can obtain by integration
wherepy is the pressure of the dark energy, is the pres- of Eq. (3)
sure of the matter field, anes denotes the nonequilibrium

L . - 3(wy+1)
pressure which is coupled to the irreversible process of en- Px _ (2o o ®)
ergy transfer between matter and gravitational fields. ;‘;( a '

In a comoving frame the conservation law of the energy- 0 _
momentum tensoF#*.,= 0 leads to the balance equation for wherepy anda, are the values of the dark energy density

the energy density and of the cosmic scale factor &t 0 (by adjusting clocks
respectively.
px+ pm+ 3H(px+ pm+ Px+ P+ @) =0 ) In order to determine the time evolution of the dark en-

ergy density one has to know the evolution of the cosmic
o scale factor which is determined from the system of Ed4js.
WZ?#EH _t'a/ t‘f‘ IS thtehHubee tptarfti_meter and the dot refers t0(5), and(8). This system of equations is closed by assuming
a Tlh?areicri]elﬁtilzga\altl)n ;efstﬂic daork”:r?ér with a scalar fiel da relationship between the pressure and the energy density of
Allow uS b Aseume that the balanceg)équation tor the dar%he matter and a constitutive equa@ion for t_he nonequilibrium
energy density is given by ressurew. We assume a barotropic equation of state for the
pressurep,,=Wmpm,, With O<w,<1 and a linear relation-
: ship between the nonequilibrium pressureand the Hubble
px+3H(px+px)=0. (3 parameteH within the framework of Eckart first order ther-

i ] modynamic theory
Hence, the balance equation for the dark energy density de-

couples from that for the energy density of the matter and we w=—3nH, n=a(pxtpm)- 9

have from Eqgs(2) and(3)
In the above equatiom is the coefficient of bulk viscosity

: _ hich is consider to be proportional to the energy density of
+3H(pm+ Pm)=—3Hw. g~ Whieh .
Pm (Pmt Pm) @ @ the mixture andw is a constant.

The equation that connects the evolution of the cosmic scalg :’r\]/e ?|ﬁeren3ate ttge E}rledmanPEquuatld(ij) ;V ith respect
factora(t) with the energy densities of the scalar and mattef© € time and get by the use o 48) and(9)

fields is given by the Friedmann equation _ o3[ (W —wy) [ 1) 3Wxt D)
=5/ ol = +(3aH—wy,—1)H?|,
87G 2| 1+py/pxla
HZ:T(PX+Pm)v ©) (10
Abovep?n is the energy density of the matter fieldtatO (by
whereG is the gravitational constant. adjusting clocks Moreover, all terms in Eq.10) are dimen-

In a previous work{9] we have calculated the energy- sionless quantities defined by
momentum pseudotensor of the gravitational field in a flat
Robertson-Walker metric and found

H= A t=tH _2 =aH
_HO! - 0 a_aoy a=a 0

TYO= 3 |’ 6 ith
G~ " 8nGlal - ©  wi

87G
If we identify the TX with the energy densityg of the Ho= \/T(p§+ pd). (11)

gravitational field we can obtain the relationshipg

=—(pxtpm) thanks to the Friedmann equatich). Equation(10) is a second-order differential equation for
~ Now we differentiatepc= — (px+ pm) With respect to the  the cosmic scale facta(t) which is a function of four pa-
Ez?ivznge?y using the balance equation for the energy den5|tf?21§fef§ré23;?ee|wm Wy, @, andp%/p%. The. splution of
quatiori10) is found by specifying values
) for two initial conditions and for the four parameters.
pct3H(pc—Pm—Px)=3Hw=, (7 Instead of using the constitutive equati@ for the non-
equilibrium pressure one may consider it as a variable within
which can be interpreted as a balance equation for the energle framework of extende@ausal or second-ordethermo-
density of the gravitational field. Moreover, if we compare dynamic theory. In this case the evolution equation for the
Egs. (4) and (7) we infer that the right-hand side of both nonequilibrium pressure—in a linearized theory—red=,
equations has a terfwith opposite sighproportional to the for example, Ref[10])
nonequilibrium pressure which is responsible to the transfer )
of energy between the gravitational and matter fields. w+Trw=—37H, (12
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where 7 is a characteristic time. Here we follow the works 1 T T T
[11] and assume that the characteristic time is givenrby \
=7lp. . . . 075 .
Hence, we obtain from the Friedmann equati®h and \ ) p
from the evolution equation for the nonequilibrium pressure 0.5k N s X i
(12) the following system of differential equations: ) N s
o e
C B[ (Wy—wy) [ 1) 3D 0.25) S d 4
==|l—3 0l = - +1)H2+ )
2[ 1+ pn/pxia ) °l B il
(13 0 S
. _ 3 = i
w+aw=—3aH", (14 025k i
thanks to the second term in E®). Apart from the dimen- ' L ' '
0 0.5 1.0 1.5 2.0

sionless quantities introduced abom,E8WGm/(3H§) isa
dimensionless nonequilibrium pressure.

If we specify values for three initial conditions and for the  FIG. 1. Dark energy density, , matter energy density,,,, and
four parametersv,,, Wy, a, andpy/py we can obtain from  acceleratiora vs timet for perfect fluid(dotted ling and first-order
the system of Eqs(13) and (14) the time evolution of the (dashed linpand second-ordestraight ling thermodynamic theo-
cosmic scale factoa(t) and of the nonequilibrium pressure ries.

w ().

Oncea(t) is determmed from Eq10) or frqm the system glecting the nonequilibrium pressu¢eerfect fluid solution
(13 and(14) one can find the energy densities by using theyye infer from this figure that for the parameters chosen
expressions above the behavior of the solutions of the first-order and

0 3(wy+1) second-order thermodynamic theories is practically the same.

1)3wx+d) px px (1
px=|= y o pm=|1+t—7 H2— | = , In the three cases there exist periods where the Universe is
a Pm pmia decelerating and accelerating. Moreover, the dark energy

(19 density decays more slowly than the matter energy density

does. Even when a small amount of dark energy density—
with respect to the matter energy density—is taken into ac-
count, these fields evolve in such a manner that for large
_ A _ : times the amount of dark energy density is very large with
=0 (by adjusting clocksarea(0)=1 for the cosmic scale respect to the energy density of the matter field. The inclu-
factor andH(0)=1 for the Hubble parameter an@(0)  gjon of the nonequilibrium pressure leads(itoa slower de-
=0 fqr the nonequilibrium pressure. Since the dlﬁerentlalcay of the matter field with respect to the time, which is a
equations(10), (13), and0(14()) do depend on the four param- onsequence of the irreversible process of energy transfer
eterswy,, wy, a, andpy/py there exists much freedom 0 petween the matter and gravitational field) a smaller
find their solutions. In order to obtain the graphics in Fig. linterval of past deceleration, ariii ) a more rapid decay of
we have choselta) wy=—0.7 so that the conditiomy< the dark energy density.
—1/3 holds, (b) wy=0.2, so that &-wy,<1/3 where the Other conclusions can be obtained by changing the values
vglu%wmzo refers to dust anavy,=1/3 to radiation,(c)  of the parameters. In the case where there is no dark energy
pmlpx=2, i.e., the amount of the matter energy density isdensitypy,=0 there is no period of acceleration, i.e., only a
twice that of the dark energy densitid) «=0 when the period of deceleration is possible. By changing the interval
nonequilibrium pressure is absent amet 0.05(say when it w,, to 1/3<w,,,<2/3—which corresponds to the interval be-
is present. tween radiationw,,=1/3 and nonrelativistic mattew,,

We have plotted in Fig. 1 the dark energy densify, the ~ =2/3—the period of past deceleration increases. This last
matter energy density,, and the acceleratioa as functions result is also found whewy increases, i.e., fowy>—0.7.
of the timet for the three casesa) by using a second-order By increasing the value of the dimensionless constatite
thermodynamic theorystraight line$, (b) by using a first- effect of the nonequilibrium pressure is more pronounced
order thermodynamic theorfdashed lines and (c) by ne-  and the period of past deceleration decreases.

where py=px/p% and pm=pm/pS, are dimensionless quan-
tities.
The initial conditions we choose at the instant of time

[1] J.L. Sieverset al, astro-ph/0205387. [4] M.S. Turner and A.G. Riess, Astrophys.589, 18 (2002.
[2] S. Perimutteet al, Astrophys. J517, 565(1999; S. Perlmut- [5] P.J.E. Peebles and B. Ratra, astro-ph/0207347.

ter, M.S. Turner, and M. White, Phys. Rev. Le&3, 670 [6] M.S. Turner, astro-ph/0207297.

(1999. [7]1 G.L. Murphy, Phys. Rev. 8, 4231(1973; @. Gran, Astro-
[3] A.G. Riesset al., Astrophys. J560, 49 (2001. phys. Space Scil73 191(1990; V. Romano and D. Pavp

047301-3



BRIEF REPORTS PHYSICAL REVIEW D57, 047301 (2003

Phys. Rev. D47, 1396(1993; A.A. Coley and R.J. van den  [9] G.M. Kremer and F.P. Devecchi, Phys. Rev.6B, 063503

Hoogen, Class. Quantum Grah2, 1977(1995; W. Zimdahl, (2002.
Phys. Rev. D61, 083511(2000; G.M. Kremer and F.P. De- [10] I. Muller and T. RuggeriRational Extended Thermodynamics
vecchi,ibid. 65, 083515(2002. (Springer, New York, 1998 C. Cercignani and G.M. Kremer,

. The Relativistic Boltzmann Equation: Theory and Applications
8 : .
[8] E. Calzetta and M. Thibeault, Phys. Rev6B, 103507(2001); (Birkhauser, Basel, 2002

D. Pavan, L.P. Chimento, and A.S. Jakubi, astro-ph/0210038;[11] V.A. Belinskivi, E.S. Nikomarov, and I.M. Khalatnikov, Sov.

W. Zimdahl, A.B. Balakin, D.J. Schwarz, and D. Payo Phys. JETPS0, 213 (1979; A. Di Prisco, L. Herrera, and J.
astro-ph/0210204. Ibanez, Phys. Rev. 53, 023501(2000.

047301-4



